Name |
Surname |
|
||||
Martin |
Krupička |
|||||
Institution name and department |
||||||
University of Chemistry and Technology in Prague, Dept. of Organic Chemistry |
||||||
Position held |
||||||
Assistan Professor |
||||||
Address/Country |
||||||
Technická 5, 16628 Praha, Czech Republic |
||||||
|
||||||
This email address is being protected from spambots. You need JavaScript enabled to view it. |
||||||
Key words |
||||||
Computational chemistry |
Physical chemistry |
|||||
Organic chemistry |
spectroscopy |
|||||
polymers |
|
|||||
Areas of Research/Expertise |
||||||
Computational chemistry with specialization on covalent mechanochemistry, including force-dependent spectroscopy and reactivity. Research focused on mechanochromic indicators, i.e. molecules, which do change spectral properties when subjected to mechanical force. The proposed molecules are synthesized and spectroscopically analyzed. For application of force, incorporation in to polymers is necessary, either soluble or elastomeric.
|
||||||
5 Most representative publications related to mechanochemistry |
||||||
(1) Wollenhaupt, M.; Schran, C.; Krupička, M.; Marx, D. Force-Induced Catastrophes on Energy Landscapes: Mechanochemical Manipulation of Downhill and Uphill Bifurcations Explains the Ring-Opening Selectivity of Cyclopropanes. ChemPhysChem 2018, 19 (7), 837–847. https://doi.org/10.1002/cphc.201701209. (2) Dopieralski, P.; Ribas-Arino, J.; Anjukandi, P.; Krupicka, M.; Marx, D. Force-Induced Reversal of β-Eliminations: Stressed Disulfide Bonds in Alkaline Solution. Angew. Chem. 2016, 128 (4), 1326–1330. https://doi.org/10.1002/ange.201508005. (3) Krupička, M.; Marx, D. Disfavoring Mechanochemical Reactions by Stress-Induced Steric Hindrance. J. Chem. Theory Comput. 2015, 11 (3), 841–846. https://doi.org/10.1021/ct501058a. (4) Krupička, M.; Sander, W.; Marx, D. Mechanical Manipulation of Chemical Reactions: Reactivity Switching of Bergman Cyclizations. J. Phys. Chem. Lett. 2014, 5 (5), 905–909. https://doi.org/10.1021/jz402644e. (5) Dopieralski, P.; Ribas-Arino, J.; Anjukandi, P.; Krupicka, M.; Kiss, J.; Marx, D. The Janus-Faced Role of External Forces in Mechanochemical Disulfide Bond Cleavage. Nat Chem 2013, 5 (8), 685–691. https://doi.org/10.1038/nchem.1676. |
||||||
5 Most representative publications non-related to Mechanochemistry |
||||||
(1) Slavík, P.; Krupička, M.; Eigner, V.; Vrzal, L.; Dvořáková, H.; Lhoták, P. Rearrangement of Meta-Bridged Calix[4]Arenes Promoted by Internal Strain. J. Org. Chem. 2019, 84 (7), 4229–4235. https://doi.org/10.1021/acs.joc.9b00107. (2) Pokluda, A.; Kohout, M.; Chudoba, J.; Krupička, M.; Cibulka, R. Nitrosobenzene: Reagent for the Mitsunobu Esterification Reaction. ACS Omega 2019, 4 (3), 5012–5018. https://doi.org/10.1021/acsomega.8b03551. (3) Krupička, M.; Sivalingam, K.; Huntington, L.; Auer, A. A.; Neese, F. A Toolchain for the Automatic Generation of Computer Codes for Correlated Wavefunction Calculations. J. Comput. Chem. 2017, 38 (21), 1853–1868. https://doi.org/10.1002/jcc.24833. (4) Sivalingam, K.; Krupicka, M.; Auer, A. A.; Neese, F. Comparison of Fully Internally and Strongly Contracted Multireference Configuration Interaction Procedures. The Journal of Chemical Physics 2016, 145 (5), 054104. https://doi.org/10.1063/1.4959029. (5) Krupička, M.; Tvaroška, I. Hybrid Quantum Mechanical/Molecular Mechanical Investigation of the β-1,4-Galactosyltransferase-I Mechanism. J. Phys. Chem. B 2009, 113 (32), 11314–11319. https://doi.org/10.1021/jp904716t. |
||||||
Orcid ID/ Google Scholar/ Researchgate/ Scopus profiles |
||||||
Orcid ID |
0000-0002-9132-5825 |
|||||
Google Scholar |
https://scholar.google.com/citations?user=RdgLX38AAAAJ |
|||||
Researchgate |
https://www.researchgate.net/profile/Martin_Krupicka |
|||||
Scopus profiles |
https://www.scopus.com/authid/detail.uri?authorId=25228778700 |
|||||
Twitter/ Linkedin/ Instagram accounts |
||||||
Twitter/ |
@KrupickM |
|||||
|
https://www.linkedin.com/in/krupickam/ |
|||||
Instagram accounts |
|
|||||
|
Share: